2,590 research outputs found

    Magnetic Order and Spin Dynamics in Ferroelectric HoMnO3_{3}

    Full text link
    Hexagonal HoMnO3_{3} is a frustrated antiferromagnet (TN_{N}=72 K) ferroelectric (TC_{C}=875 K) in which these two order parameters are coupled. Our neutron measurements of the spin wave dispersion for the S=2 Mn3+^{3+} on the layered triangular lattice are well described by a two-dimensional nearest-neighbor Heisenberg exchange J=2.44 meV, and an anisotropy DD that is 0.093 meV above the spin reorientation transition at 40 K, and 0.126 meV below. For HcH\parallel c the magnetic structures and phase diagram have been determined, and reveal additional transitions below 8 K where the ferroelectrically displaced Ho3+^{3+} ions are ordered magnetically.Comment: To be published in Physical Review Letter

    Lines pinning lines

    Full text link
    A line g is a transversal to a family F of convex polytopes in 3-dimensional space if it intersects every member of F. If, in addition, g is an isolated point of the space of line transversals to F, we say that F is a pinning of g. We show that any minimal pinning of a line by convex polytopes such that no face of a polytope is coplanar with the line has size at most eight. If, in addition, the polytopes are disjoint, then it has size at most six. We completely characterize configurations of disjoint polytopes that form minimal pinnings of a line.Comment: 27 pages, 10 figure

    Modeling Camera Effects to Improve Visual Learning from Synthetic Data

    Full text link
    Recent work has focused on generating synthetic imagery to increase the size and variability of training data for learning visual tasks in urban scenes. This includes increasing the occurrence of occlusions or varying environmental and weather effects. However, few have addressed modeling variation in the sensor domain. Sensor effects can degrade real images, limiting generalizability of network performance on visual tasks trained on synthetic data and tested in real environments. This paper proposes an efficient, automatic, physically-based augmentation pipeline to vary sensor effects --chromatic aberration, blur, exposure, noise, and color cast-- for synthetic imagery. In particular, this paper illustrates that augmenting synthetic training datasets with the proposed pipeline reduces the domain gap between synthetic and real domains for the task of object detection in urban driving scenes

    Neel to Spin-Glass-like Phase Transition versus Dilution in Geometrically Frustrated ZnCr_{2-2x}Ga_{2x}O_4

    Full text link
    ZnCr2O4 undergoes a first order spin-Peierls-like phase transition at 12.5 K from a cubic spin liquid phase to a tetragonal Neel state. Using powder diffraction and single crystal polarized neutron scattering, we determined the complex spin structure of the Neel phase. This phase consisted of several magnetic domains with different characteristic wave vectors. This indicates that the tetragonal phase of ZnCr2O4 is very close to a critical point surrounded by many different Neel states. We have also studied, using elastic and inelastic neutron scattering techniques, the effect of nonmagnetic dilution on magnetic correlations in ZnCr_{2-2x}Ga_{2x}O_4 (x=0.05 and 0.3). For x=0.05, the magnetic correlations do not change qualitatively from those in the pure material, except that the phase transition becomes second order. For x= 0.3, the spin-spin correlations become short range. Interestingly, the spatial correlations of the frozen spins in the x=0.3 material are the same as those of the fluctuating moments in the pure and the weakly diluted materials

    Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3

    Get PDF
    TbMnO3 is an orthorhombic insulator where incommensurate spin order for temperature T_N < 41K is accompanied by ferroelectric order for T < 28K. To understand this, we establish the magnetic structure above and below the ferroelectric transition using neutron diffraction. In the paraelectric phase, the spin structure is incommensurate and longitudinally-modulated. In the ferroelectric phase, however, there is a transverse incommensurate spiral. We show that the spiral breaks spatial inversion symmetry and can account for magnetoelectricity in TbMnO3.Comment: 4 pages revtex, accepted by Phys. Rev. Lett. on June 21, 200

    Capacity Estimation for Vehicle-to-Grid Frequency Regulation Services with Smart Charging Mechanism

    Get PDF
    Due to various green initiatives, renewable energy will be massively incorporated into the future smart grid. However, the intermittency of the renewables may result in power imbalance, thus adversely affecting the stability of a power system. Frequency regulation may be used to maintain the power balance at all times. As electric vehicles (EVs) become popular, they may be connected to the grid to form a vehicle-to-grid (V2G) system. An aggregation of EVs can be coordinated to provide frequency regulation services. However, V2G is a dynamic system where the participating EVs come and go independently. Thus it is not easy to estimate the regulation capacities for V2G. In a preliminary study, we modeled an aggregation of EVs with a queueing network, whose structure allows us to estimate the capacities for regulation-up and regulation-down, separately. The estimated capacities from the V2G system can be used for establishing a regulation contract between an aggregator and the grid operator, and facilitating a new business model for V2G. In this paper, we extend our previous development by designing a smart charging mechanism which can adapt to given characteristics of the EVs and make the performance of the actual system follow the analytical model.Comment: 11 pages, Accepted for publication in IEEE Transactions on Smart Gri

    Searching edges in the overlap of two plane graphs

    Full text link
    Consider a pair of plane straight-line graphs, whose edges are colored red and blue, respectively, and let n be the total complexity of both graphs. We present a O(n log n)-time O(n)-space technique to preprocess such pair of graphs, that enables efficient searches among the red-blue intersections along edges of one of the graphs. Our technique has a number of applications to geometric problems. This includes: (1) a solution to the batched red-blue search problem [Dehne et al. 2006] in O(n log n) queries to the oracle; (2) an algorithm to compute the maximum vertical distance between a pair of 3D polyhedral terrains one of which is convex in O(n log n) time, where n is the total complexity of both terrains; (3) an algorithm to construct the Hausdorff Voronoi diagram of a family of point clusters in the plane in O((n+m) log^3 n) time and O(n+m) space, where n is the total number of points in all clusters and m is the number of crossings between all clusters; (4) an algorithm to construct the farthest-color Voronoi diagram of the corners of n axis-aligned rectangles in O(n log^2 n) time; (5) an algorithm to solve the stabbing circle problem for n parallel line segments in the plane in optimal O(n log n) time. All these results are new or improve on the best known algorithms.Comment: 22 pages, 6 figure
    corecore